Shunsuke Tada (多田 駿介)

Postdoctoral researcher in mathematics (Topological Data Analysis, persistence modules over finite posets, bipath persistent homology).

Topological Data Analysis Persistence modules over posets Homological algebra Bipath persistence

Affiliation

Postdoctoral researcher at Mathematical Science Center for Co-Creative Society (MathCCS) , Tohoku University
April 2025 – present

Contact

E-mail: shunsuke.tada.e6[at]tohoku.ac.jp
GitHub: ShunsukeTada1357

Short bio

I study mathematics for (mainly) Topological Data Analysis. I am currently interested in persistence modules over finite posets from a viewpoint of homological algebra, and computations of their structures.

banana

Preprints

  1. Shunsuke Tada, Stability of Bipath Persistence Diagrams, arXiv:2503.01614 (2025). arXiv
  2. Toshitaka Aoki, Shunsuke Tada, On preservation of relative resolutions for poset representations, arXiv:2506.21227 (2025). arXiv

Refereed Papers

  1. Shunsuke Tada, Prime ideals in categories of representations of quivers of type A, Kyushu Journal of Mathematics 77(1), 159–177 (2023). arXiv
  2. Toshitaka Aoki, Emerson G. Escolar, Shunsuke Tada, Bipath persistence, Japan Journal of Industrial and Applied Mathematics (17 December 2024). Article
  3. Toshitaka Aoki, Emerson G. Escolar, Shunsuke Tada, Summand-injectivity of interval covers and monotonicity of interval resolution global dimensions, Journal of Applied and Computational Topology 9, 13 (2025). Article

Software / Computation

  1. Code for visualizing the Gabriel quiver of END(G), where G is the direct sum of all non-isomorphic interval modules. This implements Proposition 6.8 of Exact Structures for Persistence Modules by B. Blanchette, T. Brüstle, and E. J. Hanson. arXiv:2308.01790
  2. Code for calculating compressed multiplicity defined in Approximation by interval-decomposables and interval resolutions of persistence modules by H. Asashiba, E. G. Escolar, K. Nakashima, M. Yoshiwaki (Definition 5.1). The code is available here and implemented in pmgap. arXiv:2207.03663
  3. A computation of bipath persistent homology. See Bipathposets. This is an implementation of Algorithm 3 in our paper Bipath persistence.

Talks & Poster Presentations

  1. Prime ideals in categories of representations of quivers of type A, AATRN virtual poster session, 2022-09-20. Poster (EN)
  2. パーシステント加群と区間表現 (Persistence modules and interval representations), Freshman Seminar 2023, 2023-02-20 – 2023-02-23. Slides (JA)
  3. Interval resolution global dimension and interval cover, poster at TDA Week 2023, 2023-07-31. Poster (EN)
  4. On interval global dimension of posets: a characterization of case 0, The 55th Symposium on Ring Theory and Representation Theory , 2023-09-05. Abstract (EN) Slides (JA/EN)
  5. On interval global dimension of posets: a characterization of case 0, Mathematical Society of Japan, Autumn Meeting 2023 , 2023-09-22. Abstract (EN) Slides (JA/EN)
  6. パーシステントホモロジー解析における区間表現のホモロジー代数的性質, Joint Research Meeting on Applied Mathematics 2023 , 2023-12-16. Abstract (EN)
  7. Posets whose persistence modules are always interval decomposable and homological invariants, JMM 2024, AIM-AMS Special Session , 2024-01-05. Slides (EN) Abstract note (EN)
  8. パーシステントホモロジーにおける区間表現のホモロジー代数的性質, パーシステントホモロジーと表現論2024, 2024-02-22. Slides
  9. Bipath persistence and interval approximation for persistence modules over finite posets, Applied CAT Seminar, 2024-04-16. Abstract
  10. A Computation of Bipath Persistent Homology and Bipath Persistence Diagrams, Asia Pacific Seminar on Applied Topology and Geometry, 2024-09-20. Slides
  11. A Computation of Bipath Persistent Homology and Bipath Persistence Diagrams, MathBio Workshop: Shape and Movement in Life Sciences, 2025-03-26. Slides
  12. Bipath Persistent Homology and its stability, TSVP Symposium: Representation Theory and Topological Data Analysis, 2025-07-22. Slides
  13. バイパス・パーシステンス図の安定性, JSIAM Annual Meeting 2025, 2025-09-04. Abstract
  14. Proposal of Bipath Persistent Homology: Visualization, Algorithm, and Stability, MathCCS Seminar, 2025-10-21. Slides
  15. 因果推論入門, 焼野CREST Workshop, 2025-12-08. Supplementary note Slides

CV

Teaching Experience

  • 2022-04-11 – 2022-09-30: TA, Introduction to Computer Science, Kobe University.
  • 2022-10-01 – 2023-02-28: TA, Mathematical Model Programming, Kobe University.
  • 2022-10-01 – 2023-02-28: TA, Mathematics Learning Support Room, Kobe University.
  • 2023-04-03 – 2023-08-31: TA, Mathematics Learning Support Room, Kobe University.

Research Assistant

  • 2022-09-20 – 2023-03-31: Research assistant, Kobe University.
  • 2023-04-01 – 2024-03-31: Research assistant, Kobe University.
  • 2024-10-02 – 2025-02-20: Research assistant, Kobe University.

Fellowships / Grants

  • Support for Pioneering Research Initiated by the Next Generation (SPRING) , 2023-04 – 2025-03.
    「区間表現,非区間表現及び位相的データ解析への応用に関する研究」
  • 研究活動スタート支援, 2025-07-31 – 2027-03-31.
    「バイパス・パーシステントホモロジー理論の応用への展開 ー逆解析手法の構築と実装ー」

Proceedings and Reports

Education

Scientific Visit