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which is an extension of persistent homology with a
visualization (bipath persistence diagram) and 

Bipath persistent homology
The aim is to introduce

stability properties

(1)Introduction: Persistent homology and related settings.

(2)Stability property of bipath persistence: Isometry theorem.
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・Persistent homology (PH) is a tool in Topological Data Analysis. 

・It captures the persistence of “shape”(connected components,  
holes or voids) of data by a persistence diagram (PD).

Ex. point cloud Persistence diagram

Introduction



Ex. Point cloud
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𝑆: 𝑆1 ⊃ 𝑆2 ⊂ 𝑆3 ⊃ 𝑆4 ⊂ 𝑆5 𝐻𝑖 𝑆 = 𝐻𝑖 𝑆𝑟1
← 𝐻𝑖 𝑆𝑟2

→ 𝐻𝑖 𝑆𝑟3
← 𝐻𝑖 𝑆𝑟4

→ 𝐻𝑖 𝑆𝑟5

(Interval-decomposable)
Zigzag PHZigzag filtration

Gunnar Carlsson, and Vin De Silva. Zigzag persistence. Foundations of computational mathematics 10 (2010): 367-405.

e.g., Temporal network 
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𝑆1,1 ⊆ 𝑆1,2 ⊆ ⋯

𝑆2,1 ⊆ 𝑆2,2 ⊆ ⋯

⋮ ⋮

⊆ ⊆
⊆⊆

𝐻𝑖(𝑆1,1) → 𝐻𝑖(𝑆1,2) → ⋯

𝐻𝑖(𝑆2,1) → 𝐻𝑖(𝑆2,2) → ⋯

⋮ ⋮

→ →
→→

Multiparameter filtration Multiparameter PH
Gunnar Carlsson, and Afra Zomorodian. The Theory of Multidimensional Persistence. Discrete Comput Geom 42, 71–93 (2009).
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Theorem [Aoki-Escolar-T, 25]

Zigzag posets (type 𝐴)

1 → 2 → ⋯ → 𝑛

1′ → 2′ → ⋯ → 𝑚′

−∞ +∞

Bipath posets

𝐵𝑛,𝑚:𝐴𝑛(𝑎):

≤

≤

Introduction

Let 𝑃 be a connected finite poset. The following are equivalent.

(a) Every 𝑃-persistence module 𝑉 is interval-decomposable.
(b) The Hasse diagram of 𝑃 is one of the following forms:

𝑥 𝑦 represents either 𝑥 → 𝑦 or 𝑥 ← 𝑦. 



Bipath PH

We can consider a bipath persistent homology (bipath PH) of a bipath
filtration, which can capture topological features across the filtration.

Introduction

Bipath filtration



We can get a Bipath Persistence Diagram (Bipath PD).

Introduction

Interval decomposition

Bipath PD

T. Aoki, E. G. Escolar, and S. Tada. 
Bipath persistence. Japan Journal of Industrial 
and Applied Mathematics, 42:453–486, 2025.



Introduction

-

Visualization(Bipath PD)

Stability theorem for Bipath PD

A recent study on bipath persistent homology:

Algorithm: Aoki, T., Escolar, E.G. & Tada, S. Bipath persistence. Japan J. Indust. Appl. Math. 42, 453–486 (2025). 
Implementation: https://github.com/ShunsukeTada1357/Bipathposets



Introduction

-

Visualization(Bipath PD)

Stability theorem for Bipath PD

A recent study on bipath persistent homology:

Algorithm: Aoki, T., Escolar, E.G. & Tada, S. Bipath persistence. Japan J. Indust. Appl. Math. 42, 453–486 (2025). 
Implementation: https://github.com/ShunsukeTada1357/Bipathposets

Data Bi-filtration Bipath filtration Bipath PD



Stability of bipath persistence diagrams



Background: Stability theorem for standard PH

⤳ It justifies the use of PH for studying noisy data.
・This implies small changes in data implies small changes in the PD.

・In persistent homology analysis stability theorem [Cohen-Steiner–
Edelsbrunner–Harer  ’07] is important.

add noise

Small change

Example

Cohen-Steiner, D., Edelsbrunner, H. and Harer, J. Stability of Persistence Diagrams. Discrete Comput Geom 37, 103–120 (2007).



Background: Stability theorem for standard PH

Let 𝑉 and 𝑊 be ℝ-persistence modules. Then, 𝑉 and 𝑊 are 𝜖-interleaved 
if and only if there exist an 𝜖-matching between ℬ(𝑉) and ℬ(𝑊). Thus, 
we have

𝑑B ℬ 𝑉 , ℬ 𝑊 = 𝑑I 𝑉, 𝑊 .

Isometry theorem [Lesnick ’15] 

Michael Lesnick. The theory of the interleaving distance on multidimensional persistence modules. Found. Comput. Math. 2015.

Recall that stability theorem can be deduced by the isometry theorem.



Stability theorem for bipath

・This suggests a justification for using bipath PH on noisy data.

・This can be deduced by the isometry theorem for bipath persistence.

Stability of bipath PDs holds [T ’25, Theorem 4.1].

Example add noise

Small change



𝐵:

Let 𝑉 and 𝑊 be 𝐵-persistence modules. Then 𝑉 and 𝑊 are 𝜖-interleaved
if and only if there exist an 𝜖-matching between ℬ 𝑉 and ℬ(𝑊). Thus, 
we have 𝑑B ℬ(𝑉), ℬ(𝑊) =  𝑑I 𝑉, 𝑊 .

Isometry theorem for bipath persistence [T ’25]

Stability theorem for bipath
To discuss stability, we consider continuous bipath poset 𝐵.

𝐵𝑛,𝑚:

1 → 2 → ⋯ → 𝑛

1′ → 2′ → ⋯ → 𝑚′

−∞ +∞ ⤳

(ℝ × 1 ) ⊔ (ℝ × 2 ) ⊔ { −∞, +∞}

・Setting for the definitions of 𝑑I and 𝑑B.
・Graph-theoretic approach in the general setting.
・Return to the bipath setting. 

⤳



Stability theorem: Setting

Example [T, ’25, Definition 3.4].
Let 𝐵 be the bipath poset. We define Λ𝜖

𝐵 := Λ𝜖
𝐵

𝜖∈ℝ≥0
by

Λ𝜖
𝐵 ±∞ ≔ ±∞, and 𝛬𝜖

𝐵 (𝑟, 𝑖) : = 𝑟 + 𝜖, 𝑖 for 𝑟, 𝑖 ∈ ℝ × 𝑖 𝑖 = 1,2 .

・Let 𝑘 be a field, and let 𝑃 be a poset. 
・A 𝑃-persistence module is an object in rep𝑘 𝑃 ≔ Fun(𝑃, vect𝑘).
・For 𝑉 ≅ ۩𝛾∈Γ 𝑉𝛾 ∈ rep𝑘(𝑃) (𝑉𝛾: indecomposable), set ℬ(𝑉):={ 𝑉𝛾 |𝛾 ∈ Γ}. 

・A translation on 𝑃 is an order-preserving map ℎ: 𝑃 → 𝑃 s. t.  𝑝 ≤ ℎ(𝑝) for 
every 𝑝 ∈ 𝑃.
・Fix a family of translations Λ ≔ Λ𝜖 𝜖∈ℝ≥0

on 𝑃 satisfying:

Λ0 = id𝑃 and Λ𝜖+𝜁 = Λ𝜖 ∘ Λ𝜁 for all 𝜖, 𝜁 ∈ ℝ≥0.



Stability theorem: Setting

Interleaving and bottleneck distances are defined w. r. t. Λ ≔ Λ𝜖 𝜖∈ℝ≥0
.

・Let 𝑘 be a field, and let 𝑃 be a poset. 
・A 𝑃-persistence module is an object in rep𝑘 𝑃 ≔ Fun(𝑃, vect𝑘).
・For 𝑉 ≅ ۩𝛾∈Γ 𝑉𝛾 ∈ rep𝑘(𝑃) (𝑉𝛾: indecomposable), set ℬ(𝑉):={ 𝑉𝛾 |𝛾 ∈ Γ}. 

・A translation on 𝑃 is an order-preserving map ℎ: 𝑃 → 𝑃 s. t.  𝑝 ≤ ℎ(𝑝) for 
every 𝑝 ∈ 𝑃.
・Fix a family of translations Λ ≔ Λ𝜖 𝜖∈ℝ≥0

on 𝑃 satisfying:

Λ0 = id𝑃 and Λ𝜖+𝜁 = Λ𝜖 ∘ Λ𝜁 for all 𝜖, 𝜁 ∈ ℝ≥0.



・We say that 𝑉 and 𝑊 are 𝜖-interleaved and write 𝑉~𝜖𝑊 if there is a pair 
of morphisms 𝛼: 𝑉 → 𝑊(𝜖) and  𝛽: 𝑊 → 𝑉(𝜖) s. t.

𝑉0→2𝜖 = 𝛽 𝜖 ∘ 𝛼 and 𝑊0→2𝜖 = 𝛼 𝜖 ∘ 𝛽.

・We write 𝑉 𝜖 ≔ 𝑉 ∘ Λ𝜖 ∈ rep𝑘 𝑃
(this gives a functor ⋅ 𝜖 : rep𝑘 𝑃 → rep𝑘(𝑃)),
then, we have the induced morphism 𝑉0→𝜖: 𝑉 → 𝑉(𝜖). 

Stability theorem: Setting
Let 𝑉, 𝑊 be 𝑃-persistence modules, and 𝜖 ≥ 0.

𝛼𝑝 𝛼(𝜖)𝑝

𝛽(𝜖)𝑝𝛽𝑝

∀𝑝 ∈ 𝑃



Definition (Interleaving distance)
The interleaving distance between 𝑃-persistence modules 𝑉 and 𝑊 is 

defined by 𝑑I
Λ 𝑉, 𝑊 : = inf 𝜖 ∈ ℝ≥0 𝑉 ~𝜖 𝑊}.

・We say that 𝑉 and 𝑊 are 𝜖-interleaved and write 𝑉~𝜖𝑊 if there is a pair 
of morphisms 𝛼: 𝑉 → 𝑊(𝜖) and  𝛽: 𝑊 → 𝑉(𝜖) s. t.

𝑉0→2𝜖 = 𝛽 𝜖 ∘ 𝛼 and 𝑊0→2𝜖 = 𝛼 𝜖 ∘ 𝛽.

・We write 𝑉 𝜖 ≔ 𝑉 ∘ Λ𝜖 ∈ rep𝑘 𝑃
(this gives a functor ⋅ 𝜖 : rep𝑘 𝑃 → rep𝑘(𝑃)),
then, we have the induced morphism 𝑉0→𝜖: 𝑉 → 𝑉(𝜖). 

Stability theorem: Setting
Let 𝑉, 𝑊 be 𝑃-persistence modules, and 𝜖 ≥ 0.



Definition (𝜖-matching)
Let 𝑉 and 𝑊be 𝑃-persistence modules. An 𝜖-matching between ℬ 𝑉 and 
ℬ 𝑊 is a partial matching 𝜎: ℬ 𝑉 ⊇ 𝑋 → 𝑌 ⊆ ℬ 𝑊 satisfying:
・ Every 𝐼 ∈ (ℬ 𝑉 ⊔ ℬ 𝑊 ) ∖ (𝑋 ⊔ 𝑌) is 2𝜖-trivial.                                               
・ If 𝜎 𝐼 = 𝐽, then 𝐼~𝜖 𝐽.

We say that 𝑉 and 𝑊 are 𝜖-matched if there is an 𝜖-matching. 

1 ∶ 1

Stability theorem: Setting

We say that a 𝑃-persistence module 𝑉 is 𝜖-trivial if 𝑉0→𝜖 = 0.

𝑋

ℬ 𝑉 ℬ 𝑊

𝑌

𝜎

: 2𝜖-trivial    
: 2𝜖-non-trivial 

Picture of a 𝜖-matching 𝜎

~𝜖



Definition (𝜖-matching)
Let 𝑉 and 𝑊be 𝑃-persistence modules. An 𝜖-matching between ℬ 𝑉 and 
ℬ 𝑊 is a partial matching 𝜎: ℬ 𝑉 ⊇ 𝑋 → 𝑌 ⊆ ℬ 𝑊 satisfying:
・ Every 𝐼 ∈ (ℬ 𝑉 ⊔ ℬ 𝑊 ) ∖ (𝑋 ⊔ 𝑌) is 2𝜖-trivial.                                               
・ If 𝜎 𝐼 = 𝐽, then 𝐼~𝜖 𝐽.

We say that 𝑉 and 𝑊 are 𝜖-matched if there is an 𝜖-matching. 

Definition (Bottleneck distance)
The bottleneck distance between 𝑃-persistence modules 𝑉 and 𝑊 is 

defined by 𝑑B
Λ ℬ 𝑉 , ℬ(𝑊) : = inf 𝜖 ∈ ℝ≥0 𝑉 and 𝑊 are 𝜖-matched}.

1 ∶ 1

Stability theorem: Setting

We say that a 𝑃-persistence module 𝑉 is 𝜖-trivial if 𝑉0→𝜖 = 0.



Stability theorem: Outline.

Let 𝑉 and 𝑊 be 𝑃-persistence modules. If 𝑉 and 𝑊 are 𝜖-matched, then
they are 𝜖-interleaved. Thus, we have 

𝑑B
Λ ℬ(𝑉), ℬ(𝑊) ≥  𝑑I

Λ 𝑉, 𝑊 .

Remark

(∵ An 𝜖-matching induces an 𝜖-interleaving.)

⤳ We observe the converse:
・𝑉 and 𝑊 are 𝜖-interleaved. ⇒ 𝑉 and 𝑊 are 𝜖-matched.  

Step1: Interpreting an 𝜖-matching as a matching in a bipartite graph
Step2: A sufficient condition for an 𝜖-matching using a bipartite graph
Step3: Hall’s marriage theorem is useful for showing the sufficient condition.
Step4: In the bipath setting, Step 2 is proved through Step 3.



・Make bipartite graph 𝐺 = 𝑉, 𝑊; 𝜖 .
- Vertices ℬ 𝑉 ⊔ ℬ(𝑊)
- Edges { 𝐼, 𝐽 ∣ 𝐼 ∈ ℬ 𝑉 , 𝐽 ∈ ℬ 𝑊 , 𝐼 ~𝜖 𝐽}

・Let 𝑉, 𝑊 be 𝑃-persistence modules.  

Stability theorem: Outline Step 1 

・ℬ2𝜖 𝑉 ≔ {𝐼 ∈ ℬ(𝑉) ∣ 𝐼 is 𝐧𝐨𝐭 2𝜖-trivial}

𝐺 = (𝑉, 𝑊; 𝜖)

ℬ 𝑉 ℬ 𝑊

ℬ2𝜖 𝑉 ℬ2𝜖 𝑊

Proposition (1)[Bjerkevik ’21, p.4]
The following are equivalent.
(a) 𝑉 and 𝑊 are 𝜖-matched. 
(b) ∃ a matching in 𝐺 = (𝑉, 𝑊; 𝜖) that covers ℬ2𝜖 𝑉 ⊔ ℬ2𝜖 𝑊 .

Håvard Bakke Bjerkevik. On the stability of interval decomposable persistence modules. Discrete &Computational Geometry, 66:92–121, 2021

: 2𝜖-trivial    
: non 2𝜖-trivial 



Let 𝑉 and 𝑊 be 𝑃-persistence modules. If the following are satisfied, then 
there is a matching in 𝐺 = (𝑉, 𝑊; 𝜖) that covers ℬ2𝜖 𝑉 ⊔ ℬ2𝜖 𝑊
・ ∃ a matching in the full subgraph 𝐺(ℬ2𝜖 𝑉 , ℬ(𝑊))that covers ℬ2𝜖 𝑉 .
・ ∃ a matching in the full subgraph 𝐺(ℬ(𝑉), ℬ2𝜖(𝑊)) that covers ℬ2𝜖(𝑊).

ℬ 𝑉

𝐺 = (𝑉, 𝑊; 𝜖)

ℬ 𝑊

ℬ2𝜖 𝑉 ℬ2𝜖 𝑊

ℬ 𝑉 ℬ 𝑊

ℬ2𝜖 𝑉 ℬ2𝜖 𝑊

Stability theorem: Outline Step 2

𝐺(ℬ(𝑉), ℬ2𝜖(𝑊))

Proposition (2) [cf. Bjerkevik, ’21, p. 111]

𝐺 = (𝑉, 𝑊; 𝜖)
𝐺(ℬ2𝜖(𝑉), ℬ(𝑊))

& ⇒ 

∃a matching covering 
ℬ2𝜖 𝑉 ⊔ ℬ2𝜖 𝑊

∃a matching covering 
ℬ2𝜖 𝑉

∃a matching covering 
ℬ2𝜖 𝑊

𝐺 = (𝑉, 𝑊; 𝜖)

ℬ 𝑉 ℬ 𝑊

ℬ2𝜖 𝑉 ℬ2𝜖 𝑊



Stability theorem: Outline Step 3

Theorem (3) [Hall, 1935, Theorem 1]

Let 𝐺 = (𝑋, 𝑌; 𝐸) be a bipartite graph such that each vertex 𝑥 ∈ 𝑋 has a 
finite neighborhood 𝑁𝐺 𝑥 ⊆ 𝑌. Then the following are equivalent:

(a) ∃ a matching in 𝐺 that covers 𝑋.
(b) For every finite subset 𝑋′ ⊆ 𝑋, we have 𝑋′ ≤ ∪𝑥∈𝑋′ 𝑁𝐺 𝑥 .

<- Since 𝑉 ∈ rep𝑘(𝑃) is pointwise finite dimensional, 
𝑁𝐺 𝑥 < ∞ for every 𝑥 ∈ ℬ2𝜖 𝑉 [Bje21, p.110].

⤳ 𝑋, 𝑌; 𝐸 : = 𝐺(ℬ2𝜖 𝑉 , ℬ 𝑊 ) satisfies the assumption of 
Hall’s theorem.

⤳ Existence of a matching covering ℬ2𝜖 𝑉 is equivalent to (b):

          ∀𝑋′ ⊆ ℬ2𝜖 𝑉 , we have 𝑋′ ≤ ∪𝑥∈𝑋′ 𝑁𝐺 𝑥 . 
Philip Hall. On representatives of subsets. Journal of the London Mathematical Society, s1-10(1):26–30,1935.

fin.

ℬ 𝑉

𝐺 = (𝑉, 𝑊; 𝜖)

ℬ 𝑊

ℬ2𝜖 𝑉 ℬ2𝜖 𝑊

𝑋, 𝑌; 𝐸 : = 𝐺(ℬ2𝜖(𝑉), ℬ(𝑊))



Stability theorem: Outline Step 3

Theorem (3) [Hall, 1935, Theorem 1]

Let 𝐺 = (𝑋, 𝑌; 𝐸) be a bipartite graph such that each vertex 𝑥 ∈ 𝑋 has a 
finite neighborhood 𝑁𝐺 𝑥 ⊆ 𝑌. Then the following are equivalent:

(a) ∃ a matching in 𝐺 that covers 𝑋.
(b) For every finite subset 𝑋′ ⊆ 𝑋, we have 𝑋′ ≤ ∪𝑥∈𝑋′ 𝑁𝐺 𝑥 .

<- Since 𝑊 ∈ rep𝑘(𝑃) is pointwise finite dimensional, 
𝑁𝐺 𝑥 < ∞ for every 𝑥 ∈ ℬ2𝜖 𝑊 [Bje21, p.110].

⤳ 𝑋, 𝑌; 𝐸 : = 𝐺(ℬ 𝑉 , ℬ2𝜖 𝑊 ) satisfies the assumption of 
Hall’s theorem.

⤳ Existence of a matching covering ℬ2𝜖 𝑊 is equivalent to (b):

          ∀𝑋′ ⊆ ℬ2𝜖 𝑊 , we have 𝑋′ ≤ ∪𝑥∈𝑋′ 𝑁𝐺 𝑥 . 
Philip Hall. On representatives of subsets. Journal of the London Mathematical Society, s1-10(1):26–30,1935.

fin.

𝑋, 𝑌; 𝐸 : = 𝐺(ℬ(𝑉), ℬ2𝜖(𝑊))

ℬ 𝑉 ℬ 𝑊

ℬ2𝜖 𝑉 ℬ2𝜖 𝑊

𝐺 = (𝑉, 𝑊; 𝜖)



𝑉 and 𝑊 are 𝜖-interleaved.

Stability theorem: Outline Step 1, 2, and 3

𝑉 and 𝑊 are 𝜖-matched. 
Prop. (1)

・ ∃a matching in 𝐺(ℬ2𝜖 𝑉 , ℬ(𝑊) that covers ℬ2𝜖 𝑉 .
・ ∃a matching in 𝐺(ℬ(𝑉), ℬ2𝜖(𝑊)) that covers ℬ2𝜖(𝑊).

⇔

Let 𝑉 and 𝑊 be 𝑃-persistence modules.

⇒
Prop. (2)

⇔
Prop. (3)

Hall

∃a matching in 𝐺 = (𝑉, 𝑊; 𝜖) that covers ℬ2𝜖 𝑉 ⊔ ℬ2𝜖 𝑊 .

Cf. [Bje, ’21, Ex. 5.3]

⇏
・ ∀𝑋′ ⊆ ℬ2𝜖 𝑉 , 𝑋′ ≤ ∪𝑥∈𝑋′ 𝑁𝐺 𝑥 holds.
・ ∀𝑋′ ⊆ ℬ2𝜖 𝑊 , 𝑋′ ≤ ∪𝑥∈𝑋′ 𝑁𝐺 𝑥 holds.

fin.

fin.



𝑉 and 𝑊 are 𝜖-interleaved.

Stability theorem: Outline Step 4

𝑉 and 𝑊 are 𝜖-matched. 
Prop. (1)

・ ∃a matching in 𝐺(ℬ2𝜖 𝑉 , ℬ(𝑊) that covers ℬ2𝜖 𝑉 .
・ ∃a matching in 𝐺(ℬ(𝑉), ℬ2𝜖(𝑊)) that covers ℬ2𝜖 𝑊 .

⇔

Let 𝑉 and 𝑊 be 𝑩-persistence modules.

⇔

⇒
Prop. (2)

Prop. (3)

Hall

⇒
[T, ’25]

⤳ 𝑑𝐵
Λ𝜖

𝐵

(ℬ(𝑉), ℬ(𝑊)) = 𝑑𝐼
Λ𝜖

𝐵

(𝑉, 𝑊)

・𝐵-persistence modules are interval-
decomposable, with each interval 
determined by two elements of 𝐵.
・Λ𝜖

𝐵 is a poset isomorphism (∀𝜖 ∈ ℝ≥0 )

∃a matching in 𝐺 = (𝑉, 𝑊; 𝜖) that covers ℬ2𝜖 𝑉 ⊔ ℬ2𝜖 𝑊 .

・ ∀𝑋′ ⊆ ℬ2𝜖 𝑉 , 𝑋′ ≤ ∪𝑥∈𝑋′ 𝑁𝐺 𝑥 holds.
・ ∀𝑋′ ⊆ ℬ2𝜖 𝑊 , 𝑋′ ≤ ∪𝑥∈𝑋′ 𝑁𝐺 𝑥 holds.

fin.

fin.



Summary

・We introduce bipath PH, which is an extension of standard PH.

・Bipath PDs have stability (arXiv: 2503.01614), and it is shown 
using an isometry theorem.

・Application of bipath PH to real data. ⤳ We recently discussed the 
use of it for image data analysis with material scientists.
・Relation with interleaving distance for finite bipath posets by Alonso 
and Liu (arXiv: 2501.00322).
⤳ Universality of interleaving distance.

Thank you for your listening.

Discussion
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