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1 Introduction

We refer the reader to [3] (arXiv:2308.14979) for details on the contents of this article.

Topological data analysis is a rapidly growing field applying the ideas of algebraic topology for data analysis.

One of its main tools is persistent homology [1], which can compactly summarize the birth and death parameters

of topological features (e.g. connected components, rings, cavities, and so on) of data via the persistence diagram

or the barcode. This allows us to analyze hidden structures in data. Algebraically, one part of the persistent

homology analysis can be formalized by using the so-called one-parameter persistence modules, which are just

(“pointwise”) finite dimensional modules over the incidence algebra of a totally ordered set. In this point of view,

one-parameter persistence modules are guaranteed to decompose into the indecomposable modules called interval

modules, which provide a multiset of intervals that are encoded by the persistence diagram or the barcode.

As a generalization, multi-parameter persistence modules are proposed, understood as representations of n-

dimensional grids, and are expected to provide richer information than the one-parameter setting. When dealing

with multi-parameter settings, however, there are some difficulties with adapting the same techniques.

Recently, there has been an interest in the use of relative homological algebra in persistence theory. Especially,

the notion of interval covers and interval resolutions as a method for dealing with non-interval representations are

developed, and the finiteness of the interval resolution global dimension has been confirmed [2].

An aim of this talk is to introduce the properties of interval covers and interval resolutions studied in [3].

First, we give a complete classification of finite posets for which all representations are interval-decomposable.

This extends the notion of the above persistence diagrams. Next, we show that the restriction of interval cover

of modules to each direct sum is injective. Finally, we show the monotonicity of the interval resolution global

dimension. These results suggest a nice behavior of interval representations as invariants in persistence theory.

2 Preliminaries

In this section , we recall the basics of the representation theory of finite dimensional algebras.

2.1 Approximations and resolutions

Let A be a finite dimensional algebra over a field k. We denote by modA the category of finitely generated

right A-modules. Throughout this article, we assume that all modules are finitely generated. For morphisms

f : X → Y and g : Y → Z of A-modules, we denote their composition by gf : X → Z. Also, we consider the

full subcategory X := addX of modA for a fixed finite collection X of (isomorphism classes of) indecomposable

A-modules including all the indecomposable projectives.
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We recall the basic terminology of relative homological algebra.

Definition 1. Let X = addX be a full subcategory of modA. For a morphism f : X →M of A-modules, we say

that

(1) f is right minimal if any morphism g : X → X satisfying fg = f is an isomorphism.

(2) f is a right X -approximation of M if X ∈ X and HomA(Y, f) is surjective for any Y ∈ X .
(3) f is a right minimal X -approximation of M if it is a right X -approximation which is right minimal.

(4) A right minimal X-resolution of M is an exact sequence

· · · −→ Jm
gm−→ · · · g2−→ J1

g1−→ J0
f−→M −→ 0,

such that f is a right minimal (addX)-approximation of M , and for each 1 ≤ i, the morphism gi is a right

minimal (addX)-approximation of Im gi = Ker gi−1.

(5) If M has a right minimal X-resolution of the form

0 −→ Jm
gm−→ · · · g2−→ J1

g1−→ J0
f−→M −→ 0,

then we say that the X-resolution dimension of M is m and write X-res-dimM = m. Otherwise, we say that

the X-resolution dimension of M is infinity. We set

X-res-gldimA := sup{X-res-dimM |M ∈ modA}

and call X-resolution global dimension of A. Notice that it can be infinity.

2.2 Partially ordered set and its representations

Let P be a finite poset. We recall that the Hasse diagram of P is a directed graph whose vertices are in bijection

with elements of P and there is a unique arrow x → y for x, y ∈ P if x < y and there is no z ∈ P such that

x < z < y. The incidence algebra k[P ] of a poset P is defined to be the quotient of the path algebra of the

Hasse diagram of P modulo the two-sided ideal generated by all the commutative relations. The module category

mod k[P ] can be described in terms of a functor category as follows. Firstly, we regard P as a category whose

objects are elements of P , and morphisms are defined by relations in P , i.e., there is a unique morphism a→ b for

a, b ∈ P if and only if a ≤ b. We denote by repk(P ) the category of (covariant) functors from P to the category

of finite dimensional vector spaces over k. For V in repk(P ), the subset supp V := {a ∈ P | Va 6= 0} is called the

support of V . The vector (dimk Va)a∈P is called the dimension vector of M .

It is well-known that there is an equivalence of abelian categories between repk(P ) and the module category

mod k[P ] of the incidence algebra of P . In this sense, we identify objects V of repk(P ) and k[P ]-modules, and the

support of a k[P ]-module M is the subset supp(M) = {a ∈ P | Mea 6= 0}, where ea is a primitive idempotent of

k[P ] corresponding to the element a ∈ P .

In our study, the following class of full subposets called interval is basic.

Definition 2. A full subposet of P is a subset P ′ ⊆ P equipped with the induced partial order. Notice that it is

completely determined by its elements. We say that

(1) P ′ is convex in P if, for any x, y ∈ P ′ and any z ∈ P , x < z < y implies z ∈ P ′,

(2) P ′ is an interval of P if P ′ is connected as a poset and is convex in P .

We denote by I(P ) the set of intervals of P .

The following special class of modules plays an important role in this article.
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Definition 3. For an interval I of P , let kI be a k[P ]-module given as follows.

(kI)a =

{
k if a ∈ I,

0 otherwise,
kI(a ≤ b) =

{
1k if a, b ∈ I,

0 otherwise.
(2.1)

An interval module is a k[P ]-module M such that M ∼= kI for some interval I ∈ I(P ). Clearly, every interval

module is indecomposable.

We denote by Ik,P the set of isomorphism classes of the interval k[P ]-modules, which is in bijection with I(P )

by I 7→ kI . Notice that IP and IP,k are finite since so is P . Each module in add IP,k is said to be interval-

decomposable. In other words, a given k[P ]-module M is interval-decomposable if and only if it can be written

as
M ∼=

⊕
I∈I(P )

k
m(I)
I

for some non-negative integers m(I). We will write IP instead of Ik,P when the base field k is clear.

Since IP contains all indecomposable projective k[P ]-modules by definition, one can consider resolutions by

interval modules. By interval covers over P (resp., interval resolutions over P ), we mean right minimal (add IP )-

approximations (resp., IP -resolutions) of k[P ]-modules. When the poset P is clear, we may omit it. In addition,

we will write

int-res-dimM := IP -res-dimM and int-res-gldim k[P ] := IP -res-gldim k[P ],

and call them the interval resolution dimension of a module M and the interval resolution global dimension of

k[P ] respectively. It has been shown in [2, Proposition 4.5] that the interval resolution global dimension is always

finite. To show that, the next proposition is a key.

Proposition 4. [2, Lemma 4.4 and its dual] The subcategory add IP is closed under both submodules and quotients

of indecomposable modules.

Then, we can apply [9, Theorem in § 5](cf. [8]) and obtain the following.

Theorem 5. [2, Proposition 4.5] For any finite poset P , int-res-gldim(k[P ]) <∞.

3 Results

In this section, we will give three results on rinterval covers and interval resolution dimensions (Theorems 6, 9,

and 11).

3.1 Result 1

Firstly, we give a complete classification of finite posets whose modules are always interval-decomposable. This

result generalizes the one-parameter settings of persistent homology.

Theorem 6. Let P be a finite poset and k[P ] the incidence algebra of P . Then, the following conditions are

equivalent.

(a) int-res-gldim k[P ] = 0.

(b) Every k[P ]-module is interval-decomposable.

(c) Each connected component of the Hasse diagram of P is one of An(a) for some orientation a or Cm,ℓ displayed
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below, where the symbol ↔ is either → or ← assigned by its orientation a:

An(a) : 1←→ 2←→ · · · · · · ←→ n,

Cm,ℓ :

1
α1 // · · ·

αm−1 // m
αm

��
0̂

α0

@@

β0

��

1̂.

1′
β1 // · · ·

βℓ−1 // ℓ′

βℓ

??

In particular, these conditions do not depend on the characteristic of the base field k.

We note that equivalences among (a) and (b) in the statement are trivial by definitions.

The following Corollary 7 is immeiate from Theorem 6 by counting intervals in Cm,ℓ.

Corollary 7. Let A be the incidence algebra of Cm,ℓ. Then, the number of isomorphism classes of indecomposable

A-modules is exactly
m2 + 4mℓ+ ℓ2 + 5m+ 5ℓ+ 6

2
. (3.1)

Example 8. The eleven interval modules over the incidence algebra of the poset C1,1 displayed below

1

��
0̂

@@

��

1̂

1′

@@

are
1

0 0
0

,
0

1 0
0

,
0

0 1
0

,
0

0 0
1

,
1

1 0
0

,
0

1 0
1

,
1

0 1
0

,
0

0 1
1

,
1

1 0
1

,
1

0 1
1

,
1

1 1
1

,

where we identify the above dimension vectors with the interval modules. We note that
1

1 1
0

is not an interval

module because the full subposet {0̂, 1, 1̂} is not convex.

When analyzing data with a filtration of the form of Cm,ℓ, we obtain a persistence module over the poset. By

seeing the dimension vector of each indecomposable direct summand of the persistence module, which becomes

an interval module by Theorem 6, we can observe the persistence of topological features in the data, similar to

the barcodes in standard persistent homology. In this sense, we say that this theorem is an extension of standard

persistent homology.

3.2 Results 2

We show the following result.

Theorem 9. Let P be a finite poset and IP the set of isomorphism classes of interval modules. For a given

k[P ]-module M , we take its interval cover f : X =
⊕m

i=1 Xi →M , where all the Xi’s are interval modules. Then,

the following holds.

(1) f is surjective.

(2) f |Xi
: Xi →M is injective for every i ∈ {1, . . . ,m}.

(3) suppX = suppM .

In particular, every Xi can be taken as an interval submodule of M .
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An importance of Theorem 9 is that it provides one way to reduce the computational burden for computing

interval resolutions. For example, when we compute an interval cover of a module M , the candidates of intervals

to be calculated are subsets of suppM . In other words, we do not need to consider intervals that are not included

in suppM .

We note that [5, Proposition 4.8] shows Theorem 9 in essentially the same way.

Example 10. We consider the D4-type quiver D4(b) displayed below:

1

��
2 3oo // 4.

Then, the incidence algebra is just a path algebra of type D4. The Auslander-Reiten quiver is given by

0
1 0 0

0
0 1 1

1
1 1 0

0
1 1 1

1
1 1 1 M 0

0 1 0
1

0 1 0
1

0 0 0 ,

0
0 0 1

0
1 1 0

1
0 1 1

a1

b2

b1

b3

a2

a3

where all indecomposable modules except for M are interval, but M is

k
t[1 1]

��
k k2

[1 0]oo [0 1] // k.

Looking at the Auslander-Reiten quiver, we find that an interval resolution of M is

0 −→ 0
1 1 1

t[b1,b2,b3]−−−−−−→ 0
0 1 1 ⊕ 1

1 1 1 ⊕ 0
1 1 0

[a1,a2,a3]−−−−−−→M −→ 0,

and hence
int-res-dimM = 1.

Consequently, the interval resolution global dimension for D4(b) is 1 because M is the only non-interval indecom-

posable module. By a similar discussion, one can show that any D4-type quiver has the interval resolution global

dimension 1.

3.3 Result 3

Finally, we study a relationship between the interval resolution global dimensions of different posets. Our result

is the following.

Theorem 11. Let P be a finite poset and k[P ] the incidence algebra of P . For any full subposet P ′ of P , we have

int-res-gldim k[P ′] ≤ int-res-gldim k[P ]. (3.2)

To put Theorem 11 in motto terms, as the “complexity” of posets P increases the ”complexity” (interval

resolution global dimension) of the incidence algebra k[P ] increases.

For the usual global dimension, we do not have the above monotonicity in general.
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Example 12. Let P and P ′ be posets given by

P : •

•
• •

•
• •

and P ′ :

•
• •

•
• •

respectively. Then, P ′ is a full subposet of P , which is obtained by removing the point in the center. The global

dimension of k[P ] is 2 and that of k[P ′] is 3 (over an arbitrary field), see [7, Section 3]. On the other hand, we

have int-res-gldim k[P ′] = 2 ≤ 3 = int-res-gldim k[P ] over a field with two elements.
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[6] Blanchette Benjamin, Brüstle Thomas and Hanson Eric J., Homological approximations in persistence theory,

Canadian Journal of Mathematics, 1-38, 2022.

[7] Kiyoshi Igusa, Dan Zacharia,On the cohomology of incidence algebras of partially ordered sets, Communica-

tions in Algebra, 18(3):873-887, 1990.

[8] Osamu Iyama, Finiteness of representation dimension, Proceedings of the american mathematical society,

131(4):1011-1014, 2003.

[9] Claus Michael Ringel, Iyama’s finiteness theorem via strongly quasi-hereditary algebras, Journal of Pure

and Applied Algebra, 214(9):1687-1692, 2010.

6


