P-23 Interval resolution global dimension and interval cover

1 Introduction | **Persistence modules**

We study the relative homological algebra of posets with respect to the intervals. We introduce our recent research on the

(1) supports of interval approximations and (2) properties of interval resolution global dimension. (3) necessary and sufficient conditions on a poset to ensure that any representation is interval decomposable.

(Third statement is equivalent to a characterization of the case where interval resolution global dimension is equal to 0)

Shunsuke Tada Kobe University

This poster presentation is based on a joint work with Toshitaka Aoki, Emerson G. Escolar.

2 Definitions

Interval modules

For an interval I of P, let k_I be a k[P]-module given as follows.

$$(k_I)_a = \begin{cases} k & \text{if } a \in I, \\ 0 & \text{otherwise,} \end{cases} \quad k_I(a \le b) = \begin{cases} 1_k & \text{if } a, b \in I, \\ 0 & \text{otherwise.} \end{cases}$$

Let \mathcal{X} be set of isomorphism classes of interval modules of A=k[P]. • Interval resolution global dimension

For a morphism $f \colon X \to M$ of A-modules, we say that

1. f is right minimal if any morphism $g: X \to X$ satisfying fg = f is an isomorphism.

Notation

Let P be a finite poset, A:=k[P] be the incidence algebra over P.

3 main theorems

(i) Summand-injectivity / Support of interval cover

Let

 $(f_i)_{i=1}^m \colon \bigoplus_{i=1}^m k_{I_i} \longrightarrow M$

be a right minimal X-approximation of M, where $X_i \in X$ are indecomposable. Then, we have following.

1. Each $f_i : k_{I_i} \to M$ is injective.

- 2. f is a right \mathcal{X} -approximation of M if $X \in \mathcal{X}$ and $_A(Y, f)$ is surjective for any $Y \in \mathcal{X}$.
- 3. f is a right minimal \mathcal{X} -approximation of M if it is a right \mathcal{X} -approximation which is right minimal.

If we can take a sequence of right minimal \mathcal{X} -approximation, the infimum of the length of the sequence, denote int-res-dim(M), is called the *interval resolution dimension of M*.

(ii) Monotonicity

Let P be a finite poset. For any full subposet P' of P, the following inequality holds .

Int-res-gldim $k[P'] \leq \text{int-res-gldim } k[P]$.

Remark

Let P' be a subposet of P like on the right.

(iii) When are all modules interval decomposable?

Let P be a poset with n vertices and k[P] the incidence algebra of poset over a field k. Then, the following conditions are equivalent.

- 1. Every k[P]-module is interval-decomposable.
- 2. Every indecomposable k[P] is interval.
- 3. int-res-gldim k[P] = 0.
- 4. *P* is either $A_n(a)$ for some orientation *a* or $C_{m,\ell}$ for some positive integers

The global dimension of k[P] is 2 and that of k[P'] is 3 (over an arbitrary field), see [4, Section 3]

All indecomposable modules are interval over the posets

 $1 \longleftrightarrow \cdots \longleftrightarrow n$

 $A_n(a)$

4 Discussion

• Does interval resolution global dimension depend on characteristic of fields?

$m, \ell > 0$ with $m + \ell = n - 2$.

• Can we apply our result (iii) and the posets $C_{m,\ell}$ to persistent homology analysis?

5 Reference

[1] Toshitaka Aoki , Emerson G. Escolar and Shunsuke Tada. Summandinjectivity of interval approximations and monotonicity of interval global dimension. Preprint

[3] Benjamin Blanchette, Thomas Brüstle, and Eric J Hanson. Homological approximations in persistence theory. Canadian Journal of Mathematics, pages 1–24, 2021. [2] Hideto Asashiba, Emerson G Escolar, Ken Nakashima, and Michio Yoshiwaki. Approximation by interval decomposables and interval resolutions of persistence modules. Journal of Pure and Applied Algebra, 227(10):107397, 2023.

[4] Kiyoshi Igusa and Dan Zacharia. On the cohomology of incidence algebras of partially ordered sets. Communications in Algebra, 18(3):873–887, 1990.